JerzyMatyjasek∗andMalgorzataTelecka
InstituteofPhysics,MariaCurie-SklodowskaUniversitypl.MariiCurie-Sklodowskiej1,20-031Lublin,Poland
DariuszTryniecki
InstituteofTheoreticalPhysics,WroclawUniversity
pl.M.Borna9,50-204Wroclaw,Poland
(Dated:February1,2008)
WeconsiderthemostgeneralhigherordercorrectionstothepuregravityactioninDdimensionsconstructedfromthebasisofthecurvaturemonomialinvariantsoforder4and6,anddegree2and3,respectively.Perturbativelysolvingtheresultingsixth-orderequationsweanalyzetheinfluenceofthecorrectionsuponastaticandsphericallysymmetricbackhole.Treatingthetotalmassofthesystemastheboundaryconditionwecalculatelocationoftheeventhorizon,modificationstoitstemperatureandtheentropy.TheentropyiscalculatedbyintegratingthelocalgeometrictermconstructedfromthederivativeoftheLagrangianwithrespecttotheRiemanntensoroveraspacelikesectionoftheeventhorizon.Itisdemonstratedthatidenticalresultcanbeobtainedbyintegrationofthefirstlawoftheblackholethermodynamicswithasuitablechoiceoftheintegrationconstant.WeshowthatreducingcoefficientstotheLovelockcombination,theapproximateexpressiondescribingentropybecomesexact.Finally,webrieflydiscusstheproblemoffieldredefinitionandanalyzeconsequencesofadifferentchoiceoftheboundaryconditionsinwhichtheintegrationconstantisrelatedtotheexactlocationoftheeventhorizonandthustothehorizondefinedmass.
PACSnumbers:04.50.+h,04.70.Dy
I.INTRODUCTION
Inrecentyearsgravitationtheorieswithhigherderivativetermshaveattractedagreatdealofattention.Indeed,accordingtoourpresentunderstandingthegeneralrelativityistobetreatedasthelowestordertermoftheeffectivetheoryconsistingofaseriesoflooporstringcorrections.Typicallysuchcorrectionsareconstructedfromhigherpowersofcurvatureandtheirderivatives,
2
and,hence,thegravitationalactionIcanbewrittenas
I=
mk=0
αkIk,
(1)
whereIkfork≥1isthecontributionofoperatorsofdimension2k,I0isrelatedtothecosmo-logicalconstantandαkarearbitraryconstants.AmongthehighercurvaturetheoriesagreatdealofactivityhasbeenfocusedontheLovelockgravity[1].Inthistheory,theLagrangianLmisconstructedfromthedimensionallyextendedEulerdensitiesofa2k-dimensionalmanifold
akbkc1d1...ckdka1b1
,R...RLk=2−kδackdkc1d11b1...akbk
(2)
wherethegeneralizedδfunctionistotallyantisymmetricinbothsetsofindices.Am−thorderLovelockaction,Im,isthesumofm+1termsgivenbyEq.(2)ofascendingcomplexity
Im=
dx(−g)
D
1/2
Lm=
dx(−g)
D1/2
mk=0
αkLk,
(3)
whereαkarearbitraryparameters.IftheLovelockactionincludesthetermsuptoLm,thedimensionofthespacetimeshouldsatisfyD≥2m+1.
VaryingtheactionfunctionalImwithrespecttothemetrictensoroneobtainstheequationsofmotionofpuregravity,whichcanbeschematicallywrittenas
Lab=
1
δgab
Im=0.
(4)
Originally,LabhasbeenintroducedbyLovelocktodemonstratethemostgeneralsymmetricanddivergence-freesecondranktensor,whichcanbeconstructedfromthemetricanditsfirstandsecondderivatives.SincetheresultingequationsoftheLovelockgravityinvolveatmostsecondderivativesofthemetricitavoidssomeofthetypicalproblemsofthehighercurvaturetheories[2,3].Specifically,attheclassicallevel,itavoidssingularperturbations[4,5,6]whichdonotapproachtheirEinsteiniancounterpartsastheperturbativeexpansionparameterissettozero,and,whenlinearized,theLovelockequationsarefreeofghosts.Moreover,thehigher-ordertermsappearquitenaturallyasthelow-energylimitofthestringtheory[2,3].
AteachorderLkisalinearcombinationofthebasiscurvatureinvariantswiththeparticularsetofcoefficientscalculatedfromEq.(2).Forexample,inthefirsttwo(simplest)cases,onehasacosmologicalconstantandthecurvaturescalar,fork=0andk=1respectively.Atk=2therearethreeinvariantswhicharecombinedintotheGauss-Bonnettermwhereasatk=3thebasishaseightmembers.
3
Ontheotherhand,onemayconsiderthemoregeneralcurvatureterms,witharbitrarycoeffi-cientsratherthanthoseinspiredbytheparticulartheory.(Seeforexample[7,8]andreferencescitedtherein).Inthiscase,therelationbetweendimensionofthespacetimeandtheorderofhighercurvaturetermsretainedintheactionfunctionalislostandthedynamicalequationsinevitablyinvolvehigherderivativesofthemetric.Thereisnothingwronginusingsuchequations,pro-videdonlythephysicalsolutionsareselected.However,theexpectedcomplexityoftheresultingequationsmaybeaseriousobstacleinthisregard.
Theliteraturedevotedtovariousaspectsofthehigherderivativegravityisvastindeed.Astheexamplesofsuchtheoriesonemayconsiderthequadraticorhigherordergravity(see[9,10,11,12,13,14,15,16]andthereferencescitedtherein),and,whenanegativecosmologicalconstantispresent,theEinstein-HilbertactioninD=5,supplementedwithRiem2=RabcdRabcd,whichcorrespondstoaneffectiveAdS5bulkaction[17].
Theforegoingdiscussionindicatesthattheanalysescanbecarriedoutintwodirections.First,onecanconstructandinvestigatethepossiblecandidatetermsthatmayappearinIk,whereastheseconddirectionofcalculationsistoapplythethusconstructedequationsintheparticularcontextofblackholephysicsorcosmologywithorwithoutadditionalmatterfields.ThelatterapproachhasbeensuccessfullyappliedinvariouscontextsinRefs.[17,18,19,20,21,22,23,24,25,26]andinthereferencescitedtherein.
Afewwordsofcommentareinorderhere.First,itshouldbeobservedthatwehavenoinformationonm,i.e.,thenumberoftermsthatshouldberetainedinEq.(1).Second,andthatiscloselyrelatedtotheaboveobservation,itisreallydesirableandperhapsunavoidabletoconstructthesolutionsofthedynamicalequationswhichreflectthenatureoftheirderivation.Finally,itshouldbeobservedthatbecauseofcomplexityoftheproblemthefullsystemofequationsisprobablyintractableanalyticallyandonehastoconstructeitherapproximatesolutionsorrefertothenumericalmethods.
InthisnoteweshallexplorethesecondpossibilityandperturbativelysolvetheequationsresultingfromthevariationoftheD−dimensionalaction(1)withoutacosmologicalconstantabouttheTangherliniblackhole[27,28].Indoingsotheclassofsolutionsarerestrictedtotheadmissibleones.WeshallassumethatthetotalactionfunctionalIisthesumofthefirstthreenonvanishingterms,Ik,constructedfromthebasiscurvatureinvariants.Thatis,weassumearbitrarycoefficientsratherthanthoseinspiredbytheparticulartheory.TheresultsofthispapergeneralizeresultsofLuandWise[20]andmaybethoughofasapartialgeneralizationoftheanalogousresultsobtainedwithintheframeworkoftheLovelockgravity[4,29,30,31,32].
4
II.
EQUATIONS
Weshallconsidertheactionfunctionalbeingasumoftheterms(conventionsareRab=Rcacb∼∂cΓcab,signature−,+,+,+)
I1=a
dDx(−g)1/2R,
(5)
I2=
dDx(−g)
1/2
b1R2+b2RabR
ab
+b3RabcdR
abcd
(6)
and
I3=
dDx(−g)
1/2
c1R3+c2RRbaRa
b+c3RRabcdRcdab+c4Rba
RdcRbdac+c5RbaRcbRa
c
+
c6Rb
aRbcdeRdeac
+
c7RabcdRefcdRefab
+
c8RceabRafcdRef
bd
,(7)
wherea=(16πGD)−1andGDisNewton’sconstant.Thatis,wewillrestrictourselvestoscalar
termsoforder2,4and6belongingtoclassesR02,1,R04,2andR06,3,respectively[8].Inthecourseof
thecalculationsweshallassumethatthecoefficientsbiandcksatisfy|bi|/a<<1and|ck/bi|<<1fori=1,..,3andk=1,...,8,respectively.Thecasebi∼cicanbeeasilyobtainedfromtheformeronesimplybyrelegatingthetermsproportionaltobibjfromtheresultingexpressions.
ItshouldbenotedthatdependingonthedimensionDthecurvaturetermsmaybesubjectedtoadditionalrelations[8].Moreover,forastaticandsphericallysymmetriclineelementwehaveaddi-tionalvanishingcombinationoftheelementsofthecurvaturebasiswiththecoefficientsdependingonD[7].
Althoughitispossibletoadopt(withsmallmodifications)theresultspresentedinRefs.[33,34,35],hereweproceeddifferentlyandusetheWeylmethod[36,37,38].Thelineelementdescribingthestatic,sphericallysymmetricD=d+2-dimensionalgeometrymaybycastintotheform
ds2=−f2(r)dt2+h−2(r)dr2+
δij+xixj
5
Rtrtr=−f−1h(f′h)′
and
j
Rtitj=−r−1f1h2f′δi,
(11)
(12)
wheretheprimedenotesdifferentiationwithrespecttothecoordinater.UponinsertingthelineelementintoIandsubsequentlyvaryingthethusobtainedreducedactionwithrespecttothefunctionsfandh,oneobtainsrathercomplicatedsystemofequations(notdisplayedhere),whichmaybefurthersimplifiedwiththesubstitution
f2(r)=e2ψ(r)1−
2M(r)
rd−1
.(14)
ExceptforcertaincombinationsofthenumericalcoefficientsbiandckleadingtothedimensionallyextendedEulerdensities,theresultingequationsofmotionarestilltoocomplicatedtobesolvedexactly.Fortunately,onecaneasilydevisetheperturbativeapproachtotheproblem,treatingthehigherderivativetermsassmallperturbations.
Now,inordertosimplifycalculationsandtokeepcontroloftheorderoftermsincomplicatedseriesexpansions,weshallintroduceanother(dimensionless)parameterε,substitutingbi→εbiandci→ε2ci.Weshallputε=1inthefinalstageofcalculations.FortheunknownfunctionsM(r)andψ(r)weassumethattheycanbeexpandedas
M(r)=
and
ψ(r)=
mi=1mi=0
εiMi(r)+O(εm+1)
(15)
εiψi(r)+O(εm+1).
(16)
ThesystemofdifferentialequationsMi(r)andψi(r)istobesupplementedwiththeappropriate,physicallymotivatedboundaryconditions.First,itseemsnaturaltodemand
M(r+)=
d−1
r+
6
d−1
/2andMi(r+)=0fori≥1,wherer+denotestheexactlocationor,equivalently,M0(r+)=r+
oftheeventhorizon.Suchachoiceleadsnaturallytothehorizondefinedmass,
MH=
dωd
dωd
where
ωd=
M,(19)
2π(d+1)/2
ard+1
(d−2)(d−1)(21)
andψ1=0.Integrationofthesecond-orderequations,althoughstraightforward,yieldsmuchmorecomplicatedresults:M2(r)=
C3(d−1)
c8(2+25d−24d2−7d3)−
8b1b3
a
ard+3
16b1b3
a
(d−2)−
(d−2)(d+1)(d+2)
−
2
8b23
[8c3d−c6(2−3d)+12c7(d−1)32b23
−3c8(d−1)−
7
andψ2(r)=−
C2(d2−1)
c8(2−3d−d2
2
)−
8b1b3
G3dωdrd−1
+4096
π3DM
2+α365536
π4G4DM
3a
(d−2)(d+2)−
8b23
dωdr
d+1
(d−2)(d−1)
(d−2)(d−1)8
realrootsofthem−thorderpolynomialequation
mk=0
cˆkFk=
2C
1a
2k
a
(d+2−n)fork>1.(27)
n=3
Notethatifthecosmologicalconstantistakentobezerothenα0=0.Finally,assumingα2=b∼εandα3=c∼ε2andexpandingEq.(25)inpowersofε,oneeasilyreproducesEq.(24).
IV.TEMPERATUREANDENTROPY
Theapproximatelocationoftheeventhorizonoftheblackholesolutionderivedintheprevioussectionisgivenbyr+=(2C)
2
1
1/(d−1)
−
d−2
1
a
(2C)
−3/(d−1)
c7[2−(d−1)(5d−4)d]+
1c3(d2−1)d+
a
(b1b3+b2b3)(d2−1)(d−2)
+
G3M4
6c3+5c7+
3
dr
gtt
−1
.(30)
Itsreciprocalisidentifiedwiththeblackholetemperature,which,inthecaseonhand,reads
T=++d−1d−1
2
c8
2a4πa
b3(2C)−3/(d−1)
(d−4)[2+(d−2)(d−1)d]
(d−2)2(4+7d−4d2)}.
(31)
9
ItshouldbenotedthattheHawkingtemperaturedoesnotdependonb1,b2,c3andc6.Thisbehaviorcanbetracedbacktothepossibilityofremovingcurvaturetermsproportionaltothisverycoefficientsbymeansoftheappropriatefieldredefinition.Sucharedefinitioncertainlymodifiesequationsofmotionofthetestparticlesbutshouldnotmodifythetemperature,which,inturn,istobemeasuredatinfinity.Ontheotherhand,thehorizondefinedmassleadstotheexpressionfortemperaturewhichdependsonthefullsetofparameters.Thereasonisthatthehorizondefinedmassisnotthemassmeasuredatinfinity.Weshallreturntothisproblemlater.
FromEq.(31)oneseesthattheheatcapacityCBH=∂M/∂TcalculatedfortheTangherliniblackholeisgivenby
TCBH=−
dωd
4πT
d
(32)
andisalwaysnegative.Thatmeansthatford>1suchablackholeisthermodynamicallyunstable,i.e.,itincreasesitstemperaturewhenradiating.Ontheotherhand,forT>>1thehigherderivativecorrectionscanmodifythisbehaviour,and,dependingonthesignsandvaluesofthecouplingconstantstheycangiveanonnegativecontributiontothetotalheatcapacityascanbeeasilyinferredfrom
TCBH=CBH+∆CBH,
(33)
where∆CBH=
×ωd
4πT
1
4
d−2
b3+
dωd
4πT
1
d−4
[8+4(d−a)(d−1)d]c7−
∂M
|<<1.(35)
10
Now,makinguseof(31)onehas
∂T
dωda2dω+
5
(2C)−d/d−1+
12GDb3
d
(d−2)2(4d2−7d−4)(2C)−(d+4)/(d−1)
4GD
AH+4π
∂L
(d)gddx,
(37)
H
whereg˜abdenotesthemetricinthesubspaceorthogonaltotheeventhorizon,and,inthecaseonhand,ListhesumoftheLagrangiansgivenbyEqs.(6)and(7).Itshouldbenotedthattocalculatetheentropytotherequiredorderitsufficestoretaininthelineelementthetermswhicharelinearinε.
ThecalculationofSconsistsofthreesteps.First,itisnecessarytoexpressthelineelementintermsofr+,whichcanbeeasilyachievedbyinvertingrelation(28).Simplecalculationsyield
C=
1
d−3
−(d−2)(d−1)r+
2a
c62
(d−1)(d+1)c3d+
1
d−5
(d−1)c7[2+d(d−1)(4−5d)]r+
+
2a1
4a
∂Rabcd
(39)
11
rememberingthatJabcdsharesallsymmetriesoftheRiemanntensor.Finally,performingsimple
d),afterintegration(whichactuallyreducestothemultiplicationoftheresultbythefactorωdr+
somealgebra,onegetsthedesiredresult:
S=
AH
+
4GD
d(d−1)
2
+
1
2a2GD
(d−2)(d−1)d(d+1)b1b3+b2b3+3b23
3
(d2−1)c6+3d(d−1)c7−
∂r+
dr++S0,
Qi
(43)
wheretheintegrationconstantS0doesnotdependonr+,butpossiblydependsonthecouplingconstantsandthespacetimedimension.Itshouldbenotedthatinthepresentapproachitisnecessarytoretaininthelineelementallthetermsproportionaltoε2also.Aftersomealgebraoneobtainstheexpressiondescribingtheentropy,whichforS0=0coincideswiththeonegivenbyEq.(41).
Theintegrationconstantcanbedeterminedfromthephysicalrequirementthattheentropyvanisheswhenthehorizonradiusshrinkstozero[32,46].FortheLovelocktheoryithasbeen
12
shownthatthisconditionleadstotheresultswhichareidenticalwiththoseobtainedwithintheframeworkoftheEuclideanapproach.Ford>4thisproceduregivesS0=0.
TheentropyasgivenbyEq.(41)isexpressedintermsoftheexactlocationoftheeventhori-zon,r+,andthereforeitdependsonthefullsetofthecouplingconstants.However,accordingtoourpreviousdiscussion,onecaneasilyreducetheirnumberbyasuitablechoiceofrepresentation.Indeed,expressingtheentropyintermsofthetotalmassasseenbyadistantobserver(or,equiv-alently,C)reducesthenumberofremainingcouplingconstantstothree.Todemonstratethis,letussubstituter+givenbyEq.(28)intoEq.(41)andretainthetermsuptosecondorderinε.Aftersomerearrangement,oneobtainsS=
ωd
(d−2)/(d−1)24aG(2C)d2
b3+
εωd
4
c8D
4+5d−6d2+d3
−
1G2M2
(4c4+c8)ε2.
(45)
Inspectionof(45)showsthatitcontainsthetermproportionaltob3,whichisabsentintheLu-Wisepaper.ThiscanbeeasilyunderstoodasLuandWiseignoredtheGauss-Bonnetterm,which,infourdimensions,doesnotaffectblackholesolutionofthefieldequations.Itaffects,ofcourse,theactionitselfandconsequentlytheentropy,leadingtoappearanceofaconstantterminSthatisindependentofM.
Finally,letusrestrictvaluesofthecoefficientstoitsLovelockcombinations.Aftersomema-nipulationsitcouldbeshown,that(41)reducestoasimpleexpression
rdS=
+ωd
3α3
r2d(d−1)+
+
4GD
n
mnd
=1
13
V.
FINALREMARKS
Sofarwehaveconsideredtheboundaryconditionsofthesecondtypeonly.Now,weshallbrieflyexamineappropriatesolutionconstructedwiththeaidoftheconditions(17)andψ(∞)=0.Sincebothsolutionsarenotindependentonecantreatthesolutionoftheonetypeastheusefulcheckoftheother.BeforeweproceedfurtherletusanalysesomegeneralfeaturesofthefunctionM(r).Natureoftheproblemandourpreviousanalysissuggeststhatthesolutionhastheform
˜(r)+C1,M(r)=M
(48)
˜(∞)=0andM˜(r+)=rd−1/2−C1,and,consequently,thetotalmassofthesystemaswithM
seenbyadistantobserver,M,canbeobtainedfrom
M(∞)=C1=
8πGD
2a
(d−2)(d−1)
rd+3
2d−2r+
3d−3r+
a2
(d−2)(d−1)
22
2d−4r+
+A2(r)
a
+
−2dc3+
1
4
(d−1)c8
(d−2)(d−1)(d+1)2
−−
ac71
c
3
(d+1)3−3d−2d24232+25d−24d−7d4
14
Similarcalculationscarriedoutforthefunctionψ(r)yield
ψ(r)=
2−+
(d−1)(d+1)
2
3
r2d+2
.
r2d+2
2c72−2d−d
(53)
Since,byassumption,theradiusoftheeventhorizonistreatedastheexactquantitynow,thethusderivedlineelementmaybeeasilyemployedinconstructionoftheentropy.First,observethattheHawkingtemperaturecalculatedwiththeaidoftheEq.(30)isgivenintermsofr+anddependsonallrelevantcoefficients.Ontheotherhandtherelation(31)isindependentofb1,b2,c4andc5.Thisbehaviourcanbeascribedtothepossibilitytoremovethedependenceofthelineelementonthisverycoefficientsattheexpenseofmodificationsoftheequationsofmotionoftestparticles.Indeed,itcouldbedemonstratedthatbymeansofthefieldredefinitionoftheform
gab→gab+εAab+ε2Aab,
where
Aab=q1Rgab+q2Rab
and
Aab=q1R2gab+q2RRab+q3gabRcdefRcdef+q4gabRcdRcd
c
+q5RacRb+q6RacdeRbcde,
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(1)
(1)
(1)
(1)
(2)
(54)
(55)
(56)
onecanremoveallthetermsintheactionexcepttheseproportionaltotheparametersb3,c7andc8.Thecoefficientsqi
(1)
andqk
(2)
canbedeterminedbysolving,ateachorderoftheexpansion,
theappropriatesystemsofequations.Astheresultofthefieldredefinition(54),oneobtainstwoadditionaltermsR2RandRab2Rab,whichcanalsoberemovedfromtheactionfunctional.Itshouldbenoted,however,thatsuchtermsappearnaturallyintheeffectiveactionofthequantizedmassivefieldsinalargemasslimit[48,49,50].
Thegeodesicequationafterthefieldredefinitionbecomes
j
dxkdxd2xi(1)
Ajk;m
ds2ds
dxk1(2)2im
+εgAmk;j−
ds
(1)Ajk;m2
dxj
ds
=0,(57)
15
wheresistheaffineparameteroftheoriginalmetric.Now,onecanrepeattheargumentsofRef.[20].BothMandTcanbemeasuredatinfinityanddonotdependontheparticularformoftheequationsofmotion.Consequently,thetemperaturemassrelationisindependentoftheremovedterms.However,todeterminetheradiusoftheeventhorizononeperformslocalmeasurementsandtheequationsofmotionoftestparticlesareimportant.
Itcouldbeeasilyseenthat,asexpected,theentropyispreciselythesameforbothchoicesofboundaryconditionsandisdescribedbytheformula(41).Sincethecalculationsforbothtypesoftheboundaryconditionshavebeencarriedoutindependently,thisequalitymayberegardedastheadditionalconsistencycheck.
APPENDIX
InthisAppendixwelistsomeformulasusedinSectionIV.TheexpansionsofthecomponentsoftheRiemanntensorandsomeofitscontractionsuptothefirstorderinε,whicharenecessaryincalculationoftheentropy,aregivenby
Rtitj=Rrirj=−
(d−1)
42ar+
j
+Oε2,δi
(A.1)
Rijkl=
1
22r+
−εb3
3(d−2)(d−1)d(d+1)
42ar+
+Oε2
(A.4)
and
R=−εb3
(d−2)(d−1)d(d+1)
16
[2]B.Zwiebach,Phys.Lett.B156,315(1985).[3]B.Zumino,Phys.Rept.137,109(1986).[4]J.Z.Simon,Phys.Rev.D41,3720(1990).
[5]L.ParkerandJ.Z.Simon,Phys.Rev.D47,1339(1993),gr-qc/9211002.[6]H.J.Bhabha,Phys.Rev.70,759(1946).
[7]S.DeserandA.V.Ryzhov,Class.Quant.Grav.22,3315(2005),gr-qc/0505039.
[8]S.A.Fulling,R.C.King,B.G.Wybourne,andC.J.Cummins,Class.Quant.Grav.9,1151(1992).[9]K.S.Stelle,GeneralRelativityandGravitation9,353(1978).[10]K.S.Stelle,Phys.Rev.D(3)16,953(1977).
[11]N.H.BarthandS.M.Christensen,Phys.Rev.D28,1876(1983).
[12]A.EconomouandC.O.Lousto,Phys.Rev.D49,5278(1994),gr-qc/9310021.
[13]M.Campanelli,C.O.Lousto,andJ.Audretsch,Phys.Rev.D49,5188(1994),gr-qc/9401013.[14]M.Campanelli,C.O.Lousto,andJ.Audretsch,Phys.Rev.D51,6810(1995),gr-qc/9412001.[15]R.C.Myers(1998),gr-qc/9811042.
[16]J.MatyjasekandD.Tryniecki,Phys.Rev.D69,124016(2004),gr-qc/0402098.[17]S.NojiriandS.D.Odintsov,Phys.Lett.B521,87(2001),hep-th/0109122.[18]R.C.Myers,Nucl.Phys.B2,701(1987).
[19]J.Callan,CurtisG.,R.C.Myers,andM.J.Perry,Nucl.Phys.B311,673(19).[20]M.LuandM.B.Wise,Phys.Rev.D47,3095(1993),gr-qc/9301021.[21]A.DobadoandA.Lopez,Phys.Lett.B316,250(1993),hep-ph/9309221.[22]S.NojiriandS.D.Odintsov,Phys.Lett.B523,165(2001),hep-th/01100.[23]S.NojiriandS.D.Odintsov,Phys.Rev.D66,044012(2002),hep-th/0204112.[24]Y.M.ChoandI.P.Neupane,Phys.Rev.D66,024044(2002),hep-th/0202140.[25]I.P.Neupane,Phys.Rev.D67,061501(2003),hep-th/0212092.
[26]M.H.DehghaniandM.Shamirzaie,Phys.Rev.D72,124015(2005),hep-th/0506227.[27]F.R.Tangherlini,NuovoCimento27,636(1963).[28]R.C.MyersandM.J.Perry,Ann.Phys.172,304(1986).[29]D.G.BoulwareandS.Deser,Phys.Rev.Lett.55,2656(1985).[30]J.T.Wheeler,Nucl.Phys.B268,737(1986).[31]J.T.Wheeler,Nucl.Phys.B273,732(1986).
[32]R.-G.Cai,Phys.Lett.B582,237(2004),hep-th/0311240.[33]J.Matyjasek,Phys.Rev.D61,124019(2000),gr-qc/9912020.[34]J.Matyjasek,Phys.Rev.D63,084004(2001),gr-qc/0010097.
[35]J.MatyjasekandO.B.Zaslavsky,Phys.Rev.D,104018(2001),gr-qc/0102109.[36]S.DeserandB.Tekin,Class.Quant.Grav.20,4877(2003),gr-qc/0306114.
[37]S.Deser,J.Franklin,andB.Tekin,Class.Quant.Grav.21,5295(2004),gr-qc/0404120.[38]S.DeserandJ.Franklin,Am.J.Phys.73,261(2005),gr-qc/0408067.
17
[39]J.Preskill,P.Schwarz,A.D.Shapere,S.Trivedi,andF.Wilczek,Mod.Phys.Lett.A6,2353(1991).[40]C.F.E.HolzheyandF.Wilczek,Nucl.Phys.B380,447(1992),hep-th/9202014.[41]R.M.Wald,Phys.Rev.D48,3427(1993),gr-qc/9307038.
[42]V.IyerandR.M.Wald,Phys.Rev.D50,846(1994),gr-qc/9403028.
[43]T.Jacobson,G.Kang,andR.C.Myers,Phys.Rev.D49,6587(1994),gr-qc/9312023.[44]T.Jacobson,G.Kang,andR.C.Myers,Phys.Rev.D52,3518(1995),gr-qc/9503020.[45]M.Visser,Phys.Rev.D48,5697(1993),hep-th/9307194.
[46]T.Clunan,S.F.Ross,andD.J.Smith,Class.Quant.Grav.21,3447(2004),gr-qc/0402044.[47]T.JacobsonandR.C.Myers,Phys.Rev.Lett.70,3684(1993),hep-th/9305016.[48]I.G.Avramidi,Nucl.Phys.B355,712(1991).[49]I.G.Avramidi,Theor.Math.Phys.79,494(19).[50]I.G.Avramidi(1986),hep-th/9510140.
因篇幅问题不能全部显示,请点此查看更多更全内容