随着污染物种类的增加,土壤污染表现出机理上的复杂性、形式的多样性和范围上的扩大化,土壤通过与大气、水的交换以及通过农作物等与人直接或间接的接触对人类的健康产生了极大的威胁。。目前,无机-有机复合污染是我国污染土壤的基本特征之一,且土壤中重金属污染一般浓度相对较高,而有机污染物的浓度则比较低。
土壤复合污染研究已成为环境科学发展的重要方向之一,随着研究方法和技术手段的进步,以前研究中探讨不深的污染治理和修复研究也有了较大的进展。近年来,美国、德国、英国、荷兰等国家先后投入巨大的人力和财力,深入开展研究污染土壤修复,在物理、、化学和联合等方面均取得了相当显著的成果。
。土壤重金属复合污染具有几个特点:①大多数金属的课移动性较差或迁移距离短;②重金属在土壤及生物体内蓄积;③重金属对植物造成的伤害具有潜伏性特征。从污染物的种类出发,土壤中重金属复合污染发生的主要类型有两种,分别是重金属元素之间构成的复合污染和重金属与有机污染物所构成的复合污染。
污染土壤修复是指利用物理、化学和生物手段,转移、吸收、降解和转化土壤中的危险污染物,使其浓度降低到可以接受的标准,或将有毒有害的污染物转化为无毒无害的物质。通过现有重金属污染土壤修复资料表明,对于重金属污染土壤的修复技术有物理修复、化学修复和生物修复、联合修复以及农业生态修复等。
物理修复方法主要有溶液淋洗法、物理工程措施、冻融法、固化稳定法和电动力法。溶液淋洗法是把土壤固相的重金属转移到土壤溶液中,在运用当中,常配合使用表面活性剂以提高淋洗效果。物理工程措施可以用于土壤重金属污染严重的地区,一些发达国家试行了固化技术和挖土深埋包装技术,但这种方法工程量大,并伴有污土的处理问题。电动力法主要是用于重金属污染土壤,在欧美一些国家发展很快,已经进入商业化阶段。其基本方法是将电极插入受污染的土壤场地或地下水区域,通过施加微弱电流,从而形成电场,利用电场产生的各种电动力学效应(包括电渗析、电迁移和电泳等)驱动土壤污染物沿电场方向定向迁移,从而将污染物富集到电极区,然后再进行集中处理或分离。作为一种新兴的原位修复技术,在污染土壤尤其是重金属污染土壤的修复中,电动力学已经显示了其高效性,尤其在传统方法难以治理的细粒致密的低渗性异质土壤以及不能改变地上环境的区域(如受污染区域上部有重要建筑物)修复中有独特的优势,且成本低于传统方法,适和无机/有机污染的饱和或非饱和土壤。
化学修复的原理与物理修复相比,利用了污染物的化学性质达到去除的目的。化学方法主要包括氧化法、还原法、溶剂萃取法和土壤改良剂投加技术等。表面活性剂增效修复(SER)是利用其的增溶-洗脱作用,提高土壤中污染物的溶液浓度,改善其生物可利用性,以达到修复的目的,在修复土壤有机物方面已经有所研究并取得了一定的效果,但是表面活性剂的二次污染和生态安全问题了它的广泛使用。
生物修复是指利用土壤中的植物、动物、微生物以及植物与微生物的综合体,吸收、富集或转化土壤中的污染物质,从而最终达到清除土壤中污染物的一类技术总称。生物修复是污染土壤修复方法的主体,其中应用最为广泛的是微生物和植物修复。同物理、化学方法相比,生物修复具有土壤理化特性破坏小、污染物降解高、二次污染小、处理成本低、应用广泛等特点,随着土壤修复要求的逐步提高,生物修复推广得到了迅猛发展。
生物修复技术分为植物修复、动物修复和微生物修复。目前,用于修复的生物主要是植物和微生物,另外还有少量的原生动物。植物修复方法主要是利用了植物对污染物的吸收、降解、转化和挥发等。微生物修复机理包括生物吸附、细胞代谢、表面生物大分子吸收转运、生物吞饮、沉淀和氧化还原等。现在在实际应用中,最常见的是根际修复。根际修复是利用土壤中的微生物、植物、菌根真菌及其相互作用的根际和菌(丝)际环境,有效地降解土壤中的污染物。它克服了微生物修复和植物修复污染土壤的不足,是污染物植物修复的纵深研究,是一种复合的生物修复技术。根际修复具有经济、有效、实用、美观、原位非破坏型、无二次污染、可大面积应用等独特优点而越来越受到人们的重视,是目前最具潜力的土壤生物修复技术之一。
菌根修复是根际修复中的一种,与其它生物修复方法相比,菌根修复的优点有,通过外延菌丝显著增加了菌根与土体的接触面积。;菌根和菌丝周围特殊的土体条件,为微生物生长和繁殖提供了良好环境,树木每克外生菌根可分别支持106个好氧细菌和102个酵母;在生物数量方面,菌根际微比周围土体高1000倍。菌根条件下,菌根与土体接触面积的扩大和微生物数量的增多为其修复污染土壤提供了良好基础。丛枝菌根(AM)是丛枝菌根真菌(AMF)与植物根系相互作用的互惠共生体,在自然界中分布最广的一类菌根,AM真菌能与陆地上绝大多数的高等植物共生。
联合修复就是共用多种修复技术或以一种修复技术为主,辅以其他方法将土壤中的污染物去除。目前土壤污染大多属于复合污染,单一修复方法难以解决复合污染土壤修复问题,所以通过不同修复方法的组合可以满足污染土壤修复的实际需求。物理和化合修复弥补了某些修复方法存在的不足,提高了污染物降解速率,降低了修复费用;生物修复与物理化学修复联合的方法主要是以一种修复技术为主,其他的为辅来完善修复技术,如微生物进一步降解物理修复中的污染物使其去除效率更高;化学和生物联合修复也是为克服其不足而创造的,它常常利用某些化学物质加快生物降解过程或强化植物对污染物的吸收降解能力等。
关键词地下水 修复技术 应用
中图分类号:P1.13 文献标识码:A
一、国内地下水环境质量现状
1.1地下水资源分布和开发利用状况
我国地下水资源地域分布不均。据调查,全国地下水资源量多年平均为8218亿立方米,其中,北方地区(占全国总面积的%)地下水资源量2458亿立方米,约占全国地下水资源量的30%;南方地区(占全国总面积的36%)地下水资源量5760亿立方米,约占全国地下水资源量的70%。总体上,全国地下水资源量由东南向西北逐渐降低。
近几十年来,随着我国经济社会的快速发展,地下水资源开发利用量呈迅速增长态势,由20世纪70年代的570亿立方米/年,增长到80年代的750亿立方米/年,到2009年地下水开采总量已达1098亿立方米,占全国总供水量的 18%,三十年间增长了近一倍。北方地区65%的生活用水、50%的工业用水和33%的农业灌溉用水来自地下水。全国655个城市中,400多个以地下水为饮用水源,约占城市总数的61%。地下水资源的长期过量开采,导致全国部分区域地下水水位持续下降。2009年共监测全国地下水降落漏斗240个,其中浅层地下水降落漏斗115个,深层地下水降落漏斗125个。华北平原东部深层承压地下水水位降落漏斗面积达7万多平方公里,部分城市地下水水位累计下降达30-50米,局部地区累计水位下降超过100米。部分地区地下水超采严重,进一步加大了水资源安全保障的压力。
1.2地下水质量分类与监测
(1)地下水质量分类
《地下水质量标准---GB/T14848-93》依据我国地下水水质现状、人体健康基准值及地下水质量保护目标,并参照了生活饮用水、工业、农业用水水质最高要求,将地下水质量划分为五类。
Ⅰ类 主要反映地下水化学组分的天然低背景含量。适用于各种用途。
Ⅱ类 主要反映地下水化学组分的天然背景含量。适用于各种用途。
Ⅲ类 以人体健康基准值为依据。主要适用于集中式生活饮用水水源及工、农业用水。
Ⅳ类 以农业和工业用水要求为依据。除适用于农业和部分工业用水外,适当处理后可作生活饮用水。
Ⅴ类 不宜饮用,其他用水可根据使用目的选用。
(2)地下水水质监测
各地区应对地下水水质进行定期检测。检验方法,按国家标准GB 5750《生活饮用水标准检验方法》执行。
各地地下水监测部门,应在不同质量类别的地下水域设立监测点进行水质监测,监测频率不得少于每年二次(丰、枯水期)。
监测项目为:pH、氨氮、盐、亚盐、挥发性酚类、氰化物、砷、汞、铬(六价)、总硬度、铅、氟、镉、铁、锰、溶解性总固体、高锰酸盐指数、硫酸盐、氯化物、大肠菌群,以及反映本地区主要水质问题的其它项目。
1.3地下水环境质量状况
根据 2000-2002年国土资源部“新一轮全国地下水资源评价”成果,全国地下水环境质量“南方优于北方,山区优于平原,深层优于浅层”。按照《地下水质量标准》(GB/T 14848-93)进行评价,全国地下水资源符合Ⅰ类-Ⅲ类水质标准的占63%,符合Ⅳ类-Ⅴ类水质标准的占37%。南方大部分地区水质较好,符合Ⅰ类-Ⅲ类水质标准的面积占地下水分布面积的 90%以上,但部分平原地区的浅层地下水污染严重,水质较差。北方地区的丘陵山区及山前平原地区水质较好,中部平原区水质较差,滨海地区水质最差。根据对京津冀、长江三角洲、珠江三角洲、淮河流域平原区等地区地下水有机污染调查,主要城市及近郊地区地下水中普遍检测出有毒微量有机污染指标。2009年,经对北京、辽宁、吉林、上海、江苏、海南、宁夏和广东等8个省(区、市)1 眼井的水质分析,水质Ⅰ类-Ⅱ类的占总数 2.3%,水质Ⅲ类的占23.9%,水质Ⅳ类-Ⅴ类的占73.8%,主要污染指标是总硬度、氨氮、亚盐氮、盐氮、铁和锰等。2009年,全国202个城市的地下水水质以良好-较差为主,深层地下水质量普遍优于浅层地下水,开采程度低的地区优于开采程度高的地区。根据《全国城市饮用水安全保障规划(2006-2020年)》数据,全国近20%的城市集中式地下水水源水质劣于Ⅲ类。部分城市饮用水水源水质超标因子除常规化学指标外,甚至出现了致癌、致畸、致突变污染指标。
1.4地下水环境质量变化趋势
据近十几年地下水水质变化情况的不完全统计分析,初步判断我国地下水污染的趋势为:由点状、条带状向面上扩散,由浅层向深层渗透,由城市向周边蔓延。南方地区地下水环境质量变化趋势以保持相对稳定为主,地下水污染主要发生在城市及其周边地区。;西北地区地下水环境质量总体保持稳定,局部有所恶化,特别是大中城市及其周边地区、农业开发区地下水污染不断加重;。
二、地下水污染防治法规及规划
2.1国内外地下水保规
(1)国内地下水保规
目前, 我国并没有地下水保护的专门法律,有关地下水资源保护的相关法律制度主要在《中华人民共和国水污染防治法》、《水污染防治法实施细则》、《中华人民共和国水法》等中有着不同程度的规定。《取水许可和水资源费征收管理条例》规定了对地下水开采实施总量控制同时通过水资源费征收机制控制地下水的开采;《饮用水水源保护区污染防治管理规定》专章规定了生活饮用水地下水源保护区的划分和防护。此外, 一些关于保护地下水的地方性立法, 如《河北省取水许可制度管理办法》、《北京市城市自来水厂地下水源保护管理办法》、《关于在苏锡常地区限期禁止开采地下水的决定》等。
(2)国外地下水保规
英国地下水资源保护的主要法律法规, 如下:
2.2我国地下水污染防治规划
(1)规划目标
到2015年,基本掌握地下水污染状况,全面启动地下水污染修复试点,逐步整治影响地下水环境安全的土壤,初步控制地下水污染源,全面建立地下水环境监管体系,城镇集中式地下水饮用水水源水质状况有所改善,初步遏制地下水水质恶化趋势。
到2020年,全面监控典型地下水污染源,有效控制影响地下水环境安全的土壤,科学开展地下水修复工作,重要地下水饮用水水源水质安全得到基本保障,地下水环境监管能力全面提升,重点地区地下水水质明显改善,地下水污染风险得到有效防范,建成地下水污染防治体系。
(2)主要任务
开展地下水污染状况调查
保障地下水饮用水水源环境安全
严格控制影响地下水的城镇污染
强化重点工业地下水污染防治
分类控制农业面源对地下水污染
加强土壤对地下水污染的防控
有计划开展地下水污染修复
建立健全地下水环境监管体系
三、地下水修复技术
根据其主要工作原理地下水修复技术可大致归并为4类,即物理技术、化学技术、生物技术和复合技术。物理技术包括水动力控制法、流线控制法、屏蔽法、被动收集法等;化学技术包括有机粘土法和电化学动力修复技术;生物修复的方法有包气带生物曝气、循环生物修复、生物注射法、地下水曝气修复、抽提地下水系统和回注系统相结合法、生物反应器法等;复合法修复技术兼有以上2种或多种技术属性,例如抽出处理法同时使用了物理修复技术、化学修复技术和生物修复技术,综合各种技术优点,在修复地下水时更加有效。
3.1物理修复法
。其中屏蔽法、被动收集法多数应用在地下水污染物治理初期,作为一种临时控制方法。
水动力控制法
其原理是建立井群控制系统,通过人工抽取地下水或向含水层内注水的方式,改变地下水原来的水力梯度,进而将受污染的地下水体与未受污染的清洁水体隔开。井群的布置可以根据当地的具体水文地质条件确定。因此,又可分为上游分水岭法和下游分水岭法。上游分水岭法是在受污染水体的上游布置一排注水井,通过注水井向含水层注入清水,使得在该注水井处形成一个地下分水岭,从而阻止上游清洁水体向下补给已被污染水体;同时,在下游布置一排抽水井将受污染水体抽出处理。下游分水岭法则是在受污染水体下游布置一排注水井注水,在下游形成一个分水岭以阻止污染羽向下游扩散,同时在上游布置一排抽水井,将初期抽出的清洁水送到下游注入,最后将抽出的污染水体进行处理。
流线控制法
流线控制法没有一个抽水廊道、一个抽油廊道(没在污染范围的中心位置)、两个注水廊道分布在抽油廊道两侧。首先从土面的抽水廊道中抽取地下水,然后把抽出的地下水注入相邻的注水廊道内,以确保最大限度地保持水力梯度。同时在抽油廊道中抽取污染物质,但要注意抽油速度不能高,要略大于抽水速度。
屏蔽法
屏蔽法是在地下建立各种物理屏障,将受污染水体圈闭起来,以防止污染物进一步扩散蔓延。常用的灰浆帷幕法是用压力向地下灌注灰浆,在受污染水体周围形成一道帷幕,从而将受污染水体圈闭起来。
被动收集法
被动收集法是在地下水流的下游挖一条足够深的沟道,在沟内布置收集系统,将水面漂浮的污染物质如油类污染物等收集起来,或将所有受污染的地下水收集起来以便处理的一种方法。
3.2化学法修复技术
有机粘土法
这是一种新发展起来的处理污染地下水的化学方法,有机粘土可以扩大土壤和含水层的吸附容量,从而加强原位生物降解,因此可以利用有机粘土有效去除有毒化合物。利用土壤和蓄水层物质中含有的粘土,注入季铵盐阳离子表面活性剂,使其形成有机粘土矿物,用来截住和固定有机污染物,防止地下水进一步污染,并配合生物降解等手段,永久地消除地下水污染。
电化学动力修复技术
电化学动力修复技术是利用土壤、地下水和污染电动力学性质对环境进行修复的新技术,它的基本原理是将电极插入受污染的地下水及土壤区域,通直流电后,在此区域形成电场。在电场的作用下水中的离子和颗粒物质沿电力场方向定向移动,迁移至设定的处理区进行集中处理;同时在电极表面发生电解反应,阳极电解产生氢气和氢氧根离子,阴极电解产生氢离子和氧气。近年来电化学动力修复技术开始用以去除地下水中的有机污染物,这种方法用于去除吸附性较强的有机物效果也比较好。电化学动力修复技术非常适合作为一项现场修复技术,安装和操作容易,既可用于饱和土壤水层,也可用于含气层土壤,不受深度,不破坏现场生态环境。
加药法
通过井群系统向受污染水体灌注化学药剂,如灌注中和剂以中和酸性或碱性渗滤液,添加氧化剂降解有机物或使无机化合物形成沉淀等。
渗透性处理床
渗透性处理床主要适用于较薄、较浅含水层,一般用于填埋渗滤液的无害化处理。具体做法是在污染羽流的下游挖一条沟,该沟挖至含水层底部基岩层或不透水粘土层,然后在沟内填充能与污染物反应的透水性介质,受污染地下水流入沟内后与该介质发生反应,生成无害化产物或沉淀物而被去除。常用的填充介质有:a.灰岩,用以中和酸性地下水或去除重金属;b.活性炭,用以去除非极性污染物和CCl4、苯等;c.沸石和合成离子交换树脂,用以去除溶解态重金属等。
冲洗法
对于有机烃类污染,可用空气冲洗,即将空气注入到受污染区域底部,空气在上升过程中,污染物中的挥发性组分会随空气一起溢出,再用集气系统将气体进行收集处理;也可采用蒸汽冲洗,蒸汽不仅可以使挥发性组分溢出,还可以使有机物热解;另外,用酒精冲洗亦可。在理论上,只要整个受污染区域都被冲洗过,则所有的烃类污染物都会被去除。
3.3生物法修复技术
生物修复是指利用天然存在的或特别培养的生物(植物、微生物和原生动物)在可环境条件下将有毒污染物转化为无毒物质的处理技术。微生物修复利用土著的、引入的微生物及其代谢过程,或其产物进行的消除或富集有毒物的生物学过程。
生物修复的方法有包气带生物曝气、循环生物修复、空气注射法、地下水曝气修复、抽提地下水系统和回注系统相结合法、生物反应器法等。由于深埋于地下,地下水生物修复技术的实施一般应结合污染的具体情况,采取不同的方法。
循环生物修复
对于受污染的地下水,可以向地下水层钻井注入空气,提供氧气,同时利用回收井,抽取地下水,进行循环,通过渗透,提供微生物需要的各种营养。从水井抽提地下水,还可以控制污染带的迁移。
地下水曝气修复
对于饱和带或者地下水,将压缩气体注入地下水饱和区,由于密度差等原因,空气会穿透地下水饱和区上升到非饱和区中,在上升过程中可使挥发性污染物进入压缩空气并被压缩空气带到非饱和区排出。
空气注射法
它主要是将加压后的空气注射到污染地下水的下部,气流加速地下水和土壤中有机物的挥发和降解,这种方法主要是抽提、通气并用,并通过增加及延长停留时问促进生物降解,提高修复效率。
植物修复技术
植物修复技术是利用天然植物生长代谢原理吸收和降解水或土壤中的污染物,因其具有成本低、不破坏地质结构、适于大范围修复等优点,广泛用于土壤及地下水中的有机物、重金属、微量元素的降解。由于特定的超累积植物生长速度慢,受到气候、土壤等环境条件,很难得到广泛应用、目前大量研究集中在基因转移技术与植物修复的结合与应用以及植物修复的影响因素和植物修复的机理上。影响植物修复的因素主要有环境因素、污染物浓度、性质和根系分布等。
3.4复合法修复技术
复合法修复技术是兼有以上两种或多种技术属性的污染处理技术,其关键技术同时使用了物理法、化学法和生物法中的两种或全部。
(1)抽出处理修复技术
在处理抽出水时同时使用了物理法、化学法和生物法,是最常规的污染地下水治理方法。该方法根据多数有机物由于密度小而浮于地下水面附近,参照地下水被污染的大致范围,通过抽取含水层中地下水面附近的地下水,把水中的有机污染物质带回地表,然后用地表污水处理技术处理抽取出的被污染的地下水,为了防止由于大量抽取地下水而导致地面沉降,或海(成)水入侵,还要把处理后的水注入地下水中,同时可以加速地下水的循环流动,从而缩短地下水的修复时间。
(2)渗透性反应屏修复技术
PRB(permeable reactive wall technology,可渗透反应墙技术)是近年来迅速发展的一种地下水污染的原位修复技术,它正在逐步取代运行成本高昂的抽出-处理(P/T)技术,成为地下水修复技术发展的新方向。目前在欧美已进行了大量的工程及试验研究,已开始商业化应用,并逐步取代运行成本高昂的抽出处理技术,成为目前地下水修复技术最重要的发展方向之一。
从广义上来讲,PRB是一种在原位对污染的羽状体进行拦截、阻断和补救的污染处理技术。。可渗透反应墙如图1所示。
图1 可渗透反应墙示意图
PRB主要由透水的反应介质组成。通常置于地下水污染羽状体的下游。与地下水流相垂直。污染物去除机理包括生物和非生物两种.污染地下水在自身水力梯度作用下通过PRB时,产生沉淀、吸附、氧化还原和生物降解反应,使水中污染物能够得以去除,在PRB下游流出处理后的净化水。它要求捕捉污染羽状体的污染物的“走向”,即把可渗透反应墙安装在含有此污染物羽状体地下水走向的下游地带含水层,从而使污染物顺利进入可渗透反应墙装置与反应材料进行有效接触,使其污染物能转化为环境可接受的另一种形式,实现使污染物浓度达到环境标准的目标。此法可去除地下水溶解的有机物、金属、放射性物质及其他的污染物质。
(2)注气-土壤气相抽提(AS-SVE)技术
注气-土壤气相抽提技术室空气扰动技术及土壤气相抽提技术的结合,空气扰动技术(或称空气注入技术,air sparging,AS),其作用介质是饱和区土壤,通过将空气或氧气注入到受污染的含水层中,被注入的空气在土体缝隙中发生水平或垂直移动,使污染物与土壤发生剥离反应,从而通过挥发作用清除掉土壤中的挥发性和半挥发性有机物。注入的空气会将污染物扩散到非饱和区,因此常结合土壤气相抽提技术(soil vapor extraction,SVE)去除包气带中的气相污染物。土壤气相抽提技术是通过特制的抽提井,利用抽真空产生的动力迫使土壤气体发生流动,从而将土壤中的挥发性和半挥发性有机物驱出,达到清除土壤气体中的挥发性有机物的目的。对于以挥发性有机物为主要污染物的场地,SVE是应用最为广泛的工程修复技术,可进行原位或异位处理。
目前, 发达国家已经将其与相关的修复技术结合起来, 形成了互补的增强技术。国内研究起步较晚, 实验室土柱通风实验的研究目前已做了不少工作, 但对场址调查、现场试验性测试、中试研究工作做的不够。
(3)各复合修复法的优缺点
四、地下水修复工程典型案例
4.1国外地下水修复工程实例
(1) Regenesis公司工程实例
加利福尼亚洲的一个名为Regenesis的基础公司研制出一系列从地下水中快速降解和分离污染物的产品,其降解速度远大于固有衰减。其中最有名的产品是氧释放化合物(ORC)和氢释放化合物(HRC),它们能有效地促进燃料、溶剂和许多其它类型地下水污染物的固有衰减。在世界范围内已有9000多个项目正在使用这两种产品。
Regenesis公司产品的优势在于,通过使用工业标准钻机和设备可进行场地修复。可通过使用不同的技术进行场地修复,如直接推进注入和钻孔回填。其它方法包括坑道和过滤保护套应用,最普遍的使用方法是直接注入。这种应用过程包括用中空钻杆把液态ORC和HRC化合物直接泵入处理区。该方法简单、快捷、有应用价值并可在多个位置使用。使用直接注入法可把ORC和HRC化合物应用于更难达到的位置,包括一些裂隙基岩或邻近大型建筑物的地下污染区。在这些位置常需要特殊的设备,如定向钻进钻机和在有效位置使用双层封隔器。实际上,在水平/定向钻进应用中也可把ORC化合物用作钻探泥浆。
在美国华盛顿第四平原服务站,由于其地下石油储蓄罐泄漏而产生了大量BTEX化学物质,包括易挥发的单芳香碳氢化合物、甲苯、苯乙烷和二甲苯,通常在汽油和其它石油产品中可发现这些化学物质。地下含水层主要由沙子和砾石组成,这表明在这些污染物中进行的自然生物降解速度会很慢,通过提供额外的氧可加速自然生物降解过程。最高管理者决定使用ORC化合物来增强生物降解速度,因为ORC化合物在6个月内预期的降解了含水层中超过50%的污染物。在此修复过程中通过15个土壤钻孔用ORC化合物对污染羽进行降解。每个钻孔被回填60磅的ORC浆液,150天后整个BTEX污染羽被降解58%。使用ORC化合物的成本为4万美元,而使用常规的泵抽-处理系统需要约25万美元。
在美国加利福尼亚洲Hollister的一个军工厂,其地下含水层受到多种化合物的污染。其中主要污染物为高氯酸盐-火箭推进剂的主要成分,从健康角度来看它能损坏甲状腺功能;六价铬(铬-6),它是一种人们公认的致癌物;冷却剂1,1,2—三氯—1,2,2—三氯甲烷,它是一种能损耗大气臭氧层的环境污染物。其含水层主要由粉砂组成,地下水以每天约0.07英尺的速度向西北方向流动。在探索研究中通过25个注入点把600磅的HRC化合物注入污染区。取样网覆盖面积约为1200平方英尺。对其监测79天后发现高氯化物浓度被减弱88%,而六价铬几乎被完全降解。
一个由俄勒冈州环境质检部门管理的清洁区,其地下水中PCE浓度达到10万微克/每升,这表明在该地区存在DNAPLs残留物,在该位置通过5个定向注入点把700磅的HRC-X注入地面,通过水井JEMW-4来监测HRC-X化合物的影响效果,结果清楚地表明HRC-X化合物促进了PCE的降解速度和原位吸附。使用HRC-X化合物处理DNPALs残留物的总费用为2万美元,通过使用直接注入技术把HRC-X化合物注入含水层。无需昂贵的现场设备、相关工作和维修与保养费用。目前,在英国和一些欧洲国家已有很多项目正在使用Regenesis公司的产品,它能有效地促进或加速自然衰减过程。当使用正确时能有效地加速降解速度。
(2)Orica公司澳大利亚 Botany地下水处理项目
Orica公司采用抽出处理修复技术建立地下水污水处理厂对地下水进行处理,利用空气吹脱法去除氯代烃类,并用热氧化技术处理尾气;吹脱后的污水采用常规污水处理法进行处理,部分出水采用反渗透技术对出水进行回用。该项目建设期两年,总花费1.67亿美元,每天处理水量为6000m3。该项目于2007年正式运营,其基本流程见下图:
该处理工艺的核心——地下水污水处理厂平面布置图如下图所示:
其工艺流程图如下:
4.2国内地下水修复工程实例
(1)常化厂地块污染场地土壤及地下水修复工程项目
项目建设地点位于常州市天宁区南部中吴大道以南,和平中路以东,大通河以北,龙游河以西,投资总额1亿元人民币,项目总占地面积100公顷,其中需要修复的两个区域是原常化厂厂区和原实验工厂厂区,共需修复土壤面积24600平方米,污染土壤总量13.7万吨,需修复地下水面积71300平方米,共需抽取污染地下水总量为62万立方米。
该项目2009年至2010年上半年开始实地调研,对土地进行分区布点,提取土壤和地下水样本,摸清土地污染程度和范围。在完成科学实验后,制定出相应的治理方案。2010年9月正式启动常化厂污染场地土壤及地下水修复工程,工程实施过程中首先掘地2-6米,把污染区约33万吨的土壤全部移走后,重新以优质的新土填充。其次,抽出60万立方地下水,进行深度处理后,再回灌地下,确保不影响地质结构,2012年底修复工程结束。
(2)广华新城地下水污染治理工程项目
2012年8月6日,五建承建的国家首例地下水污染治理工程——国家机关公务员住宅建设服务中心广华新城地下水污染治理工程项目开工。此次地下水污染治理项目是我国尝试性大面积地下水污染治理的先河,工程施工工期为730天,目前尚未完工。
五、地下水与地表水的联合运用
5.1水资源的联合运用
为促进一个流域、地区或灌区的水资源供需平衡,对地表水和地下水进行合理的统一开发利用和管理。在农田灌溉中,联合运用的主要形式是井渠结合。有些地区兴建了大规模的引水、调水工程,与原有的井灌区联成一个系统;而在一些大型自流灌区,由于地表水资源不足,又在灌区进行机井建设。美国加利福尼亚州的河谷、巴基斯坦的印度河平原、印度的恒河平原和中国的黄淮海平原,都是大面积地表水和地下水联合运用的地区。
水资源联合运用的优点
①调蓄地表径流。利用含水层的蓄水功能,蓄存丰水时期的多余地表水量,供枯水时期使用。
②改善地下水质。调蓄地表径流水量,对含盐量较高的地下水可以起到稀释作用。巴基斯坦和以色列的一些灌区,曾采用这样的方法减少地下水的含盐量。中国黄淮海平原的黑龙港地区,对浅层矿化地下水也进行过"抽咸换淡"。在荷兰,还把夏天温度较高的水回灌地下,到冬天抽出灌溉对水温要求较高的温室花卉和蔬菜。
③地下水位。大型水库和灌区的兴建,增加了对地下水的补给,引起地下水位升高,导致灌溉土地渍涝和次生盐碱化。在这些地区,开采利用地下水可降低地下水位,配合地面排水,进行旱、涝、盐碱综合治理;但地下水超量开采会引起地下水位下降,使水井建设费用和抽水费用增加。长期超采会形成大面积地下水位降落漏斗,招致地面沉陷和滨海地区海水入侵等危害。在这种情况下可引进地表水,以减少地下水开采量,并对地下水进行回灌,以地下水位。
5.2水污染物总量联合控制
流域水污染物总量控制作为水资源保护管理的重要途径,正逐渐受到广泛重视。。开展地表水与地下水污染物总量联合控制应用研究,对从整体上保护流域水资源和水环境具有重要意义。
广东省环境科学研究院以郑州市为研究对象,从地表水与地下水联合水功能区划分、环境容量核算、污染物总量联合控制、水污染防治对策与措施4个方面入手,把地表水系统与地下水系统联合起来开展水污染物总量控制研究。。
参考文献
[1] 全国地下水污染防治规划(2011-2020年)
[2] 中国地质调查局.中国地下水资源与环境调查报告.2005
[3] 范宏喜.我国地下水资源与环境现状综述.水文地质工程地质.2009,(2):I~III
[4] 杨梅,费宇红.地下水污染修复技术的研究综述.勘察科技技术.2008,(4):12~16
因篇幅问题不能全部显示,请点此查看更多更全内容