AlejandroRivero∗
Dep.Economia,Univ.CarlosIIIMadrid
February2,2008
Abstract
Itissuggestedthatgenerationsarelinkedtotheneedofcalculatingcurvatureofspaceviaadeformedordiscretecalculus.Quantizationwouldlimitthedeformation,buildingthreegenerations,andnotfour,asotherinterpretationcouldimply.
1Introduction
Itisknown[8,11]thattheusualambiguityinthedefinitionof(partial)deriva-tivesofafunctionbecomesasourceofproblemswhenwegotoquantumtheory.ThesimplestexampleisFeynmanquantummechanics(or0+1dimensionalfieldtheory),wheredifferentelectionsofdiscretisationforthederivativedrivetodif-ferentorderingrulesinthequantizedtheory;Weylcorrespondstothesymmetricone,Born-Jordantotheforwardderivative,andsoon,andevenmoreexoticeffectscouldbegotbygaugingtheambiguity.
Mypaper[17]hasbeenunderstoodin[2]asifitweregivingtheoreticalsupporttotheexistenceofafourthgeneration.Indeed,asitispointedin[17]andalsopreviouslyin[16],Ibelievethattheambiguitiesofadiscretecurvatureonlypointtothreegenerations,theextantambiguitybeingabsorbedinascaleparameterwhichrelatestoPlankconstant(and,tothedeformationparameterofthecalculus).Itismyfaultthatthisprocessisjusthalfcooked,insparsereferencesattheendof[15]and,asappendix,in[14].IapologizeIcannothelpwithadetailedexampleyet,soinordertotrytocleartheconfusion,thispapercanonlytoexpandontheideasofourprevious[17].
So,pleaseconsiderthisnoteasatraditionalconferenceposter,tryingtoputillustrationstothepreviouswork.Theexamplesofthepreviouspaperswereformulatedinthecontextofnoncommutativegeometry.Herewewillkeepourselvesintheconceptualcloud.
2Pictorialimage
Themainobservation,figure(1),isthattodefineavectortangentatapointx0weneedtobuildtwoseriesofpointsapproachingx0,sothelimit(x2−x1)/ǫwillgivethetangentvector.Itseemsthattherearetwoambiguities,tochoose
x2andtochoosex1,butoneofthemcanbeabsorbedintothescaleparameter.Theextantambiguityistheoneweproposedtoconsideramass.
x2
x0
x1Figure1:q-tangentvectortothepointx0
Considernow,asinfigure(2),acurveofwhichwewanttoknowthecur-vatureatapoint.Thisimpliestogivefourpoints,sotheorthogonaltotwoq-tangentvectorswillcrossmarkingthepositionoftheradiusofcurvature,andgivingustheinverseofthecurvaturewhenthecontinuouslimitisapproached.
Againthescalecanabsorboneoftheambiguities,andwehavethreefreeparameters,thatwecanidentifywiththreemasses.
Whengoingtohigherdimensions,theplayisnotmoreambiguous,butitismorecomplicated(Figure3).Thecurvaturetensorisbuildfromthecurvaturesofthegeodesicsurfacetangenttoeach2-plane.Everydirectionmustbecon-sidered,anddependencesbetweentheambiguitiesoforthogonaldirectionsarenotclear.
Therearewaystosimplifythetask,forinstanceaskingforadditionalre-strictions(isotropy,homogeneity)tothespace-timemanifold.Inanycase,weshouldexpectnowtomultiplyourdegenerationtimesthenumberofdimensionofspacetime,tobeabletocopewitheverycurvature.Thuswewillgetfourparticles(fromspace-timedimension)andthreegenerations(fromambiguity).
Last,considerhowthescaleparametercouldcomeintoplay.Everytangentvectorisdefinedviatalestheorem,figure(4),relatingthetime(orparameterofthecurve)withthedistance.Classicallyeachtriangleiswelldefinedateachpointofthecurve.Now,doubtscanberaisedwhenwemakeanintegration(figure5)inthe”deformed”way,beforeanylimit.Itseemsthatweshouldintroduceanscaleparameterǫ,tobeabletoaddthequantitiesofeachtriangle,andthatthecontinuouslimitshouldcomewhenǫ→0.
TheprocessasIseeitisalittlemoreinvolved,asfirstoneneedstousescaleinvariancetogofromabareǫtoarenormalizedh,andtheclassicallimitish→0.ThismethodisneededbecausethegroupoidofpathsgivenbyConnesdoesnotadd(x,y,t)(y,z,t)to(x,z,2t)butto(x,z,t).
2
x4
x3x2x0
x1
Figure2:Curvatureofacurvethroughx0
3Interdisciplinarywork
Themostpopularofalltheregularisationproblemsistheoneoffermiondou-bling,whichhappenswhenwetrytoquantizefermionsinlatticequantumfieldtheory.Here,ifweuseonlythesymmetricdefinitionofderivativewefinishwithasetof2dfermionsforeachinitialfermioninthetheory.Wilsoncuresthisbyincorporatingtheambiguitytothetheory,buildingeachderivativeasacombinationofsymmetricandantisymmetricpart,andthengivingahighmasstotheantisymmetriccombination,whichcontrolstheunwanteddegreesoffree-dom.Recently[12,9]Wilson’approachhasbeenresuscitedandtheGinsparg-Wilsonconditionislookingforaplaceinnoncommutativegeometry.L¨uscher’approachisperhapsclosesttoDimakisorMajidones,butBalachandran[1]isalreadylookingforaroleforitneartotheaxiomaticofNCGmanifolds.
Fromthepointofviewofnoncommutativegeometry,itseems[10]thatnaivelatticefieldtheorydoesnotqualifyasadifferentialgeometry,asevenwhenmultiplecopiesofelementsaretaken(whichseemsneededtocopewithNCGfirstorderaxiom),itfailstofulfillPoincareduality.Togetoutofthistrap,thesuggestionshouldbetoactwiththeDiracoperatorindifferentpointsofthespace.
Wewilldothisbyintroducingsmallfinitedifferencesbetweenthefieldsat-tachedtoeachfermion,andrelatingthisdifferencetotheinverseofthemassreasonedinthepictorialshow,sothatintheverylowenergylimittheimple-menteddifferencebecomesequaltothederivativeitdiscretizes.OurgoalistoexpandNCGLagrangiantocontaininformationaboutquantizationambiguity,
3
Figure3:Twocurvaturesofasurface
butwiththistechniquewealsogettointroducethespectrumofmasses.
TimeagoinBarcelona,Alain,inadualsessionwithAsthekar,suggestedthatthenewerversions[5,6]oftheConnes-Lotapproachshouldbeseenasanlowenergyapproximationtoacompletelynoncommutativespaceonlyvisibleathighenergy.Insomesense,herethemethodologyisreversed,bettingfirstofa”verynoncommutative”modelandtryingtoguessamethodtogodowntolowenergy.Atverylowenergy,onlygravityshouldbeseen,whileatintermediateenergy,Connes-ChamseddineorConnes-Lotshouldbesuitableapproximations.
JusttovisualizesuchapproximationwewanttokeepourselvesusingtheDiracoperatorformalism.Ontheotherhand,fromtheTangentGroupoidconstruction,weknowthatthesetoffunctionsoverthetangentspaceTMofamanifoldcanbepasted,viaWeylquantization[3,4],tothesetofkernelsk(x,y)ofoperatorsinaHilbertspace,andthisformalismisveryneartothefinitedifferenceschemeproposedabove.Itshouldbeniceifourcandidatesfordifferentialformshadsomedualitywiththisspaceofoperators.Alsobecausethetangentgroupoidseemsclosertoq-deformationsasmadebyMajidandothers,andtothenon-commutativeformalismusedbylatticetheoretistsintheabovereferredworks.
4Mass
Basicmass,aswehaveseen,shouldbefixedbythepositionofthevectoroffigure1respectiveofthepointwhich”differentiation”isassignedto.
4
Figure4:Tangentvectorasalimitor”instantaneousvelocity”
Figure5:Summation(integration)acrossasectionofthetangentbundle.Shouldalengthscalebedefinedateverypoint?
5
Foreachparticle,amassrelationshipcanbeimposedaskingtothesecondderivativestogivethesameresultasaiterationofthefirstderivatives.Sothetwovectorsofacurvaturewouldbegivenbythepositionsoftheextremepointsofthevectorgivingthefirstderivative.
Suchrelationshipcouldbenotneededifsomegeometricalconsistencycondi-tionswhereimposedtothemassmatrix.Forinstance,itisknowthatPoincareDualityforcestheConnes-Lottmodelgenerationstobedegeneratedinmass.Morerestringentconditionscouldappear.
Finally,themassrelationbetweendifferentparticlesisthetouchiestpoint.Mybetistolinkittoapreferredkindofmetrics,withapreferredsetofcoordinatesystems.Verymuchasithappensinasphericalsetofcoordinates:avariationacrossδrhasnoadditionalweight,variationsacrossδθ,δφcarryanadditionalweightr,andvariationacrossδφcarriesanadditionaltermrespecttoδθ.In[16],thiswasstatedwithanobscurecomparisonbetweenquarksandangles.
5Acknowledgements
TogaugetheambiguityisasuggestionofE.Follana,yettoexplore.Cheerfullyacknowledged,aswellasalotofsupporttodiscussotherideas.MomentumspacewasseenasconfigurationspacewithafieldofforcesinsomecoffeetalkswithJ.I.Martinez,accordingmyoldnotebooks.Again,yettoexplore.And,asnotedelsewhere,themainthesisofthispapersurfacedwhileabedroomtalkwithJ.GuerreroatVietri,whereIwasdriventothinkinanalogiesbetweenthefourfundamentalfermionsandafourdimensionalvolumeform.Moreaboutthiscanbeforthcomingin[18],wherewewonderabouttherelationbetweenjunkremovalandthePauliantisymmetrizationofNfermions.
TherelaxingambianceprovidedbythefolksofLaLatina,theMadridinnerneighborhoodwhereIamdoingahalfsabbatical,shouldalsobeacknowledged.
References
[1]A.P.Balachandranetal.,TheFermionDoublingProblemandNoncom-mutativeGeometry,hep-th/9911087[2]Chao-ShangHuangetal.,TheB→Xsl+l−andB→Xsγdecayswiththe
fourthgeneration,hep-ph/9911203[3]JFCari˜nenaetal.,Connes’TangentGroupoidandDeformationQuanti-zation,J.ofGeom.andPhys,v32(1999).math/9802102[4]A.Connes,NonCommutativeGeometry,AcademicPress1994[5]A.Connes,NonCommutativeGeometryandReality
[6]A.Chamseddine,A.Connes,AUniversalActionFormula,preprinthep-th/9606056[7]A.Connes,Gravitycoupledwithmatterandthefoundationofnoncommu-tativegeometry,preprinthep-th/9603053
6
[8]J.S.Dowker,PathIntegralsandOrderingRules,J.Math.Phys.17(1976)[9],T.Fujikawaetal.,Non-commutativeDifferentialCalculusandtheAxial
AnomalyinAbelianLatticeGaugeTheories,hep-lat/9906015[10]M.G¨okelerandT.Sh¨uker,Doesnoncommutativegeometryencompasslat-ticegaugetheory,hep-th/9805077[11]RoyR.Gould,Am.J.Phys.,63,n.2(1995)
[12]M.L¨uscher,Chiralgaugetheoriesonthelatticewithexactgaugeinvariance,
hep-lat/9909150[13]S.Majid,AdvancesinQuantumandBraidedGeometry,q-alg/9610003v2[14]A.Rivero,Introductiontothetangentgrupoid,dg-ga/9710026.[15]A.Rivero,AshortderivationofFeynmanformula,quant-ph/9803035[16]A.Rivero,SomeconjectureslookingofaNCGtheory,hep-th/9804169[17]A.Rivero,Ongenerations,hep-th/9905021
[18]A.Rivero,Junk:thefermionicansatz,workincourse.
[19]M.Santander,Interpretaciongeometricadelagravitacion,DFTUZ/93/11
7
因篇幅问题不能全部显示,请点此查看更多更全内容